Oxidation-reduction potentials of molybdenum, flavin and iron-sulphur centres in milk xanthine oxidase.
نویسندگان
چکیده
1. The mid-point reduction potentials of the various groups in xanthine oxidase from bovine milk were determined by potentiometric titration with dithionite in the presence of dye mediators, removing samples for quantification of the reduced species by e.p.r. (electron-paramagnetic-resonance) spectroscopy. The values obtained for the functional enzyme in pyrophosphate buffer, pH8.2, are: Fe/S centre I, -343 +/- 15mV; Fe/S II, -303 +/- 15mV; FAD/FADH-; -351 +/- 20mV; FADH/FADH2, -236 +/-mV; Mo(VI)/Mo(V) (Rapid), -355 +/- 20mV; Mo(V) (Rapid)/Mo(IV), -355 +/- 20mV. 2. Behaviour of the functional enzyme is essentially ideal in Tris but less so in pyrophosphate. In Tris, the potential for Mo(VI)/Mo(V) (Rapid) is lowered relative to that in pyrophosphate, but the potential for Fe/S II is raised. The influence of buffer on the potentials was investigated by partial-reduction experiments with six other buffers. 3. Conversion of the enzyme with cyanide into the non-functional form, which gives the Slow molybdenum signal, or alkylation of FAD, has little effect on the mid-point potentials of the other centres. The potentials associated with the Slow signal are: Mo(VI)/Mo(V) (Slow), -440 +/- 25mV; Mo(V) (Slow)/Mo(IV), -480 +/- 25 mV. This signal exhibits very sluggish equilibration with the mediator system. 4. The deviations from ideal behaviour are discussed in terms of possible binding of buffer ions or anti-co-operative interactions amongst the redox centres.
منابع مشابه
Xanthine oxidase-catalysed oxidation of paracetamol.
Paracetamol was polymerized in a reaction mixture containing xanthine oxidase, xanthine and paracetamol. This polymerization reaction was not inhibited by allopurinol or KCN, indicating that neither the molybdenum sites nor the iron-sulphur centres of the enzyme were involved in this catalytic activity. Removal of the flavin centres from the enzyme, however, completely abolished paracetamol oxi...
متن کاملEffects of solvent on the properties of ferredoxins.
observation temperatures were taken lower. This possibility would be consistent with a suggestion (Massey, 1973) that aldehyde oxidase contains two types of iron-sulphur centre, based on apparent discrepancies between optical and e.p.r. data from reductive titration experiments (Rajagopalan et al., 1968). Until a second e.p.r. signal is demonstrated in these enzymes, we prefer, however, to assu...
متن کاملElectron transfer in milk xanthine oxidase as studied by pulse radiolysis.
Electron transfer within milk xanthine oxidase has been examined by the technique of pulse radiolysis. Radiolytically generated N-methylnicotinamide radical or 5-deazalumiflavin radical has been used to rapidly and selectively introduce reducing equivalents into the enzyme so that subsequent equilibration among the four redox-active centers of the enzyme (a molybdenum center, two iron-sulfur ce...
متن کاملThe isolation of demolybdo xanthine oxidase from bovine milk.
It was deduced many years ago from indirect evidence that demolybdo xanthine oxidase is present in normal bovine milk. This has now been confirmed by isolation of this enzyme form by a method based on the folate-gel affinity-chromatography procedure described Nishino & Tsushima [(1986) J. Biol. Chem. 261, 11242-11246]. Enzymic and spectroscopic properties of demolybdo xanthine oxidase, which re...
متن کاملA new non-functional form of milk xanthine oxidase containing stable quinquivalent molybdenum.
A new non-functional modified form of milk xanthine oxidase is described. This contains molybdenum in a quinquivalent state, which is resistant to both oxidation and reduction. The new species is derived from the native enzyme in a two-step process. The first step is the conversion into the desulpho form, via loss of the 'persulphide' sulphur, and the second involves reaction with ethylene glyc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 157 2 شماره
صفحات -
تاریخ انتشار 1976